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Abstract. We describe systems that use machine learning methods to retrieve 
and/or extract textual information from the Web.  In particular, we present our 
Wisconsin Adaptive Web Assistant (WAWA), which constructs a Web agent by 
accepting user preferences in form of instructions and adapting the agent’s 
behavior as it encounters new information.  Our approach enables WAWA to 
rapidly build instructable and self-adaptive Web agents for both the information 
retrieval (IR) and information extraction (IE) tasks.  WAWA uses two neural 
networks, which provide adaptive capabilities for its agents.  User-provided 
instructions are compiled into these neural networks and are modified via training 
examples.  Users can create these training examples by rating pages that WAWA 
retrieves, but more importantly our system uses techniques from reinforcement 
learning to internally create its own examples.  Users can also provide additional 
instruction throughout the life of an agent.  Empirical results on several domains 
show the advantages of our approach. 
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learning, neural networks, information retrieval, information extraction 
 
1 Introduction 
The rapid growth of information on the World Wide Web has boosted interest in 
using machine learning techniques to solve the problems of retrieving and 
extracting textual information from the Web [43,47].  The information-retrieval 
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(IR) learners attempt to model a user’s preferences and return Web documents 
“matching” those interests.  The information-extraction (IE) learners attempt to 
find patterns that fill a user-defined template (or questionnaire) with correct pieces 
of information.   

We discuss several noted IR and IE learners in this chapter.  Among the IR 
learners, many different machine learning techniques have been used ranging from 
a Bayesian classifier in Syskill and Webert [30] to our use of theory-refinement 
and reinforcement learning in WAWA-IR [10,11,40,41].  The breath of investigated 
approaches for IE learners basically falls into three categories: (i) systems that use 
hidden Markov models [2,15,20,31,38], (ii) systems that use relational learners 
[5,14,42], and (iii) systems that use theory-refinement techniques (such as our 
WAWA-IE) [10,12,13]. 
 Our system, WAWA (short for Wisconsin Adaptive Web Assistant), interacts with 
its user and the Web to build an intelligent agent for retrieving and/or extracting 
information.  It has two sub-systems: (i) an information retrieval sub-system, 
called WAWA-IR; and, (ii) an information extraction sub-system, called WAWA-IE.  
WAWA-IR is a general search-engine agent, which can be trained to produce 
specialized and personalized IR agents.  WAWA-IE is a general extractor system, 
which creates specialized agents that extract pieces of information from 
documents in the domain of interest.   
 WAWA builds its agents based on ideas from the theory-refinement community 
within machine learning [28,29,45].  First, the user-provided domain knowledge is 
“compiled” into “knowledge based” neural networks [45].  Then, this prior 
knowledge is refined whenever training examples become available.  By using 
theory refinement, we are able to find an appealing middle ground between non-
adaptive agent programming languages and systems that solely learn user 
preferences from training examples.  On one hand, utilizing user’s prior 
knowledge enables WAWA’s agents to perform reasonably well initially.  On the 
other hand, since WAWA’s agents are learners,1 they do not rely on the user’s prior 
knowledge to be correct.   
 This chapter is organized as follows.  We present the fundamental operations of 
WAWA’s agents in Section 2.  WAWA’s information-retrieval (IR) system along 
with other IR learners are discussed in Section 3.  In Section 4, we present 
WAWA’s information-extraction (IE) system and other notable IE systems.  
Section 5 describes some future directions.  Finally, Section 6 summarizes the 
material in this chapter.   
 
2 The Core of WAWA Agents 
In this section, we briefly review the fundamental operations of a WAWA agent, 
which are used in both the WAWA-IR and the WAWA-IE agents [11]. 
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 The knowledge base of a WAWA agent is centered around two basic functions: 
SCORELINK and SCOREPAGE (see Figure 1).  If given highly accurate such 
functions, standard heuristic search would lead to effective retrieval of text 
documents: the best-scoring links would be traversed and the highest-scoring 
pages would be collected. 

Link 
Score?

Page 
Score? 

…

 
Fig. 1. Central Functions of WAWA’s Agents Score Web Pages and Hyperlinks 

 Users are able to tailor an agent’s behavior by providing advice about the above 
functions.  This advice is “compiled” into two “knowledge based” neural networks 
[45] implementing the functions SCORELINK and SCOREPAGE.  These functions, 
respectively, guide the agent’s wandering within the Web and judge the value of 
the pages encountered.  Subsequent reinforcements from the Web (e.g., 
encountering dead links) and any ratings of retrieved pages that the user wishes to 
provide are, respectively, used to refine the link- and page-scoring functions.   
 A WAWA agent’s SCOREPAGE network is a supervised learner [26].  That is, it 
learns through user-provided training examples and advice.  A WAWA agent’s 
SCORELINK network is a reinforcement learner [44].  This network automatically 
creates its own training examples [40,41], though it can also use any user-provided 
training examples and advice.  Hence, our design of the SCORELINK network has 
the important advantage of producing self-tuning agents since training examples 
are created by the agent itself. 
 The user-provided instructions is mapped into the SCOREPAGE and SCORELINK 
networks using a Web-based language, called advice.  An expression in our advice 
language is an instruction of the basic form:  

when preconditions then actions 
The preconditions refer to aspects of the contents and structure of Web pages.  
The actions specify the goodness of a page or a link when the preconditions are 
met.   
 WAWA extracts its input features from either HTML or plain-text Web pages.  
These input features2 constitute the primitives in its advice language, which can be 
combined through logical and numerical operators to create more complicated 
advice constructs.  Table 1 lists some of WAWA’s extracted input features.  The 
features anywhereOnPage(<word>) and anywhereInTitle(<word>) take a word 
as input and return true if the word was on the page or inside the title of the page, 
respectively.  WAWA captures a large number of its features by sliding a fixed-
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size3 window across a page one word at a time.  In particular, WAWA defines most 
of the features representing a page with respect to the current center of this sliding 
window, e.g. the isNthWordInTitle(<N>, <word>) feature is true when the given 
word is in the Nth word (from the left) on a page’s title.  Moreover, WAWA also 
has two bags of words of size 10 around the sliding window which allows it to 
capture instructions such as when “Green Bay” is near “Packers” then show 
page.  Besides the input features related to words and their positions on the page, a 
WAWA agent’s input vector also includes various other features, such as the length 
of the page, the date the page was created and modified (should the page’s server 
provide that information), whether the sliding window is currently inside 
emphasized HTML text, the number of words in the title or URL, how many words 
mentioned in advice are present in the title or URL, etc. 

Table 1. Sample Extracted Input Features 
anywhereOnPage(<word>) 
anywhereInTitle(<word>) 
 ⋅⋅⋅ 
isNthWordInTitle(<N>, <word>)
 ⋅⋅⋅ 
centerWordInWindow(<word>) 
 ⋅⋅⋅ 
numberOfWordsInTitle() 
numberOfAdviceWordsInTitle() 
 ⋅⋅⋅ 
insideEmphasizedText() 
timePageWasLastModified() 

 
 A key feature of WAWA’s advice language is its ability to capture abstract 
concepts (e.g., names) through variables.  To understand how variables are used in 
WAWA, assume that we wish to use the system to create a home-page finder.  We 
might wish to give such a system some (very good) advice like: When the title of 
the page contains the phrase “?FirstName ?LastName ’s Home Page”, show me 
the page.  The leading question marks (?) indicate variables that are bound upon 
receiving a request to find a specific person’s home page.  The use of variables 
allows the same advice to be applied to the task of finding the home pages of any 
number of different people. 
 Advice is compiled into the SCOREPAGE and SCORELINK networks using a 
variant of the KBANN algorithm [45].  The mapping process is analogous to 
compiling a traditional program into machine code, but our system instead 
compiles advice rules into an intermediate language expressed using neural 
networks.  This provides the important advantage that our “machine code” can 
automatically be refined based on feedback provided by either the user or the 
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Web.  Namely, we can apply the backpropagation algorithm [34] to learn from the 
training set.  

We will illustrate the mapping of an advice rule with variables through an 
example, which also illustrates the powerful phrase4 construct in WAWA’s advice 
language.  Suppose we are given the following advice rule: When the phrase 
“Professor ?FirstName ?LastName” is on the page, show me the page.  During 
advice compilation, WAWA maps the phrase by centering it over the sliding 
window (Figure 2).  In this example, our phrase is a sequence of three words, so it 
maps to three positions in the input units corresponding to the sliding window 
(with the variable ?FirstName associated with the center of the sliding window).   

5 Score
Page

Bias
=12.5

5

5

5

… 

… 

Is it true that the word 
at Left1InWindow is 
“Professor”? 

Is it true that the word 
at Right1InWindow is 
bound to ?LastName?

Is it true that the word 
at CenterInWindow is 
bound to ?FirstName?

 
Fig. 2. Mapping Advice into SCOREPAGE Network 

The variables in the input units are bound outside of the network and the units 
are turned on only when there is a match between the bindings and the words in 
the sliding window.  So, if the bindings are: 

?FirstName ← “Joe” 
?LastName ← “Smith” 

then, the input unit “Is it true that the word at CenterInWindow is bound to 
?FirstName?” will be true (i.e., set to 1) only if the current word in the center of 
the window is “Joe.”  WAWA then connects the referenced input units to a newly 
created (sigmoidal) hidden unit, using weights of value 5.  Next, the bias (i.e., the 
threshold) of the new hidden unit is set such that all the required predicates must 
be true in order for the weighted sum of its inputs to exceed the bias and produce 
an activation of the hidden unit near 1.  Some additional zero-weighted links are 
also added to this new hidden unit, to further allow subsequent learning, as is 
standard in KBANN.  Finally, WAWA links the hidden unit into the output unit with 
a weight determined by the rule’s action.  The mapping of advice rules without 
variables follows the same process except that there is no variable-binding step.  
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3 Retrieving Information from the Web 
Information retrieval (IR) systems take as input a set of documents (a.k.a. the 
corpus) and a query (usually consisting of a bunch of keywords or keyphrases).  
The ultimate goal of an IR system is to return all and only the documents that are 
relevant to the given query.  To achieve this goal, IR learners attempt to model a 
user’s preferences and return Web documents “matching” those interests. 
 This section describes our design for creating specialized/personalized 
intelligent agents for retrieving information from the Web, an experimental study 
of our system, and some other recently developed IR learners. 

3.1 WAWA-IR 

WAWA’s IR system is a general search-engine agent that through training can be 
specialized/personalized.  Table 2 provides a high-level description of  WAWA-IR. 

Table 2. WAWA’s Information Retrieval Algorithm 
Unless they have been saved to disk in a previous session, create the ScoreLink 
and ScorePage neural networks by reading the user’s initial advice (if any). 

Either (a) start by adding user-provided URLs to the search queue; or (b) 
initialize the search queue with URLs that will query the user’s chosen set of 
Web search engine sites. 

Execute the following concurrent processes.   

Independent Process #1  
While the search queue is not empty nor the maximum number of URLs visited, 
• Let URLtoVisit = pop(search queue).   
• Fetch URLtoVisit.   
• Evaluate URLtoVisit using the ScorePage network. 
• If score is high enough, insert URLtoVisit into the sorted list of best pages 
  found. 
• Use the score of URLtoVisit to improve the predictions of the ScoreLink  
  network. 
• Evaluate the hyperlinks in URLtoVisit using ScoreLink network (but, only  
  score those links that have not yet been followed this session). 
• Insert these new URLs into the (sorted) search queue if they fit within its  
  max-length bound. 

Independent Process #2 
Whenever the user provides additional advice, insert it into the appropriate 
neural network. 

Independent Process #3 
Whenever the user rates a fetched page, utilize this rating to create a training 
example for the ScorePage neural network. 

 

 



 The basic operation of WAWA-IR is heuristic search, with our SCORELINK 
network acting as the heuristic function.  Rather than solely finding one goal node, 
we collect the 100 pages that SCOREPAGE rates highest.  The user can choose to 
seed the queue of pages to fetch in two ways.  She can either specify a set of 
starting URLs or provide a simple query that WAWA-IR converts into “query” 
URLs.  These “query” URLs are then sent to a user-chosen subset of selectable 
search engine sites (currently ALTAVISTA, EXCITE, GOOGLE, HOTBOT, INFOSEEK, 
LYCOS, TEOMA, and YAHOO).   
 There are three ways to train WAWA-IR’s two neural networks: (i) system-
generated training examples, (ii) advice from the user, and (iii) user-generated 
training examples. 
 Before fetching a page P, WAWA-IR predicts the value of retrieving P.  This 
“predicted” value of P is based on the text surrounding the hyperlink to P and 
some global information on the “referring” page (e.g., the title, the URL, etc).  
After fetching and analyzing the actual text of P, WAWA-IR re-estimates the value 
of P.  Any differences between the “before” and “after” estimates of P’s score 
constitute an error that can be used by backpropagation [34] to improve the 
SCORELINK neural network.5 

In addition to the above system-internal method of automatically creating 
training examples, the user can improve the SCOREPAGE and SCORELINK neural 
networks in two ways.  One, the user can provide additional advice.  Observing 
the agent’s behavior is likely to invoke thoughts of good additional instructions.  
A WAWA-IR agent can accept new advice and augment its neural networks at any 
time.  It simply adds to a network additional hidden units that represent the 
compiled advice, a technique whose effectiveness was demonstrated on several 
tasks [25].  Providing additional hints can rapidly and drastically improve the 
performance of a WAWA-IR agent, provided the advice is relevant.  Maclin and 
Shavlik [25] showed that their algorithm is robust when given advice 
incrementally.  When “bad” advice was given, the agent was able to quickly learn 
to ignore it.   

Although more tedious, the user can also rate pages as a mechanism for 
providing training examples for use by backpropagation.  This can be useful when 
the user is unable to articulate why the agent is misscoring pages and links.  This 
standard learning-from-labeled-examples methodology has been previously 
investigated by other researchers, e.g., Pazzani et al. [30].  However, we 
conjecture that most of the improvement to WAWA-IR’s neural networks, 
especially to SCOREPAGE, will result from users providing advice.  In our personal 
experience, it is easy to think of simple advice that would require a large number 
of labeled examples in order to learn purely inductively.  In other words, one 
advice rule typically covers a large number of labeled examples.  For example, a 
rule such as when (“404 file not found") then avoid showing page will cover all 
pages that contain the phrase “404 file not found".   
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3.2 WAWA-IR: An Experimental Study 

To evaluate WAWA’s IR system, we built a home-page finder agent by using 
WAWA’s advice language.  We chose the task of building a home-page finder 
because of an existing system named AHOY! [39], which provides a valuable 
benchmark.  Ahoy! uses a technique called Dynamic Reference Sifting, which 
filters the output of several Web indices and generates new guesses for URLs when 
no promising candidates are found.   
 For our home-page finder, we wrote a simple interface layered on top of 
WAWA-IR.  Then, by using our advice language’s variables, we wrote 76 general 
advice rules related to home-page finding, many of which are slight variants of 
others (e.g., with and without middle names or initials).6  Specializing WAWA-IR 
for this task and creating the initial general advice took only one day, plus we 
spent parts of another 2-3 days tinkering with the advice using 100 examples of a 
“training set” that we describe below.  This step allowed us to manually refine our 
advice – a process, which we expect will be typical of future users of WAWA-IR. 

To run experiments that evaluate WAWA-IR, we randomly selected 215 people 
from Aha’s list of machine learning (ML) and case-based reasoning (CBR) 
researchers (www.aic.nrl.navy.mil/~aha/people.html).7  Table 3 lists the best 
performance of WAWA-IR’s home-page finder and the results from AHOY!, and 
two different HOTBOT versions.  The first HOTBOT version performs the engine’s 
specialized search for people; we use the name given on Aha's page for these 
queries.  In the second HOTBOT version, we provide the search engine with a 
general-purpose disjunctive query, which contains the person's last name as a 
required word, and all the likely variants of the person's first name.  The latter is 
the same query that WAWA-IR initially sends to five of its search engines (namely, 
ALTAVISTA, EXCITE, INFOSEEK, LYCOS, and YAHOO).  For our experiments, we 
only look at the first 100 pages that HOTBOT returns and assume that few people 
would look further into the results returned by a search engine.  Besides reporting 
the percentage of the 100 test set home-pages found, we report the average ordinal 
position (i.e., rank) given that a page is found, since WAWA-IR, AHOY!, and 
HOTBOT all return sorted lists.   

Table 3. Empirical Results: WAWA-IR vs AHOY! and HOTBOT 

System % Found Mean Rank  
Given Page Was Found 

WAWA-IR with 76 advice rules 92% 1.3 
AHOY! 79% 1.4 

HOTBOT person search 66% 12.0 
HOTBOT general search 44% 15.4 

 
These results provide strong evidence that the version of WAWA-IR, specialized 

into a home-page finder by adding simple advice, produces a better home-page 
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finder than does the proprietary people-finder created by HOTBOT or by AHOY!.  
The difference (in percentage of home-pages found) between WAWA-IR and 
HOTBOT in this experiment is statistically significant at the 99% confidence level.  
The difference between WAWA-IR and AHOY! is statistically significant at the 
90% confidence level.  These results illustrate that we can build an effective agent 
for a web-based task quickly.   

The above experiments were performed in 1998, at which time GOOGLE did not 
exist publicly.  To compare our IR system with GOOGLE, we ran new experiments 
with our home page finder in 2001.  Table 4 compares the best performances of 
WAWA-IR’s home page finder seeded with and without GOOGLE to the results 
from GOOGLE (run by itself).  The WAWA-IR experiment seeded without GOOGLE 
uses the following search engines: AltaVista, Excite, InfoSeek, Lycos, and Teoma.  
For these experiments, we trained the WAWA-IR agent with reinforcement 
learning, supervised learning, and all 76 home-page finding advice rules. 

Table 4. Empirical Results: Two Different WAWA-IR Agents vs GOOGLE 

System % Found Mean Rank ± Variance 
Given Page Was Found 

WAWA-IR with GOOGLE 96%  1.12 ±    0.15 
GOOGLE 95%  2.01 ± 16.64 

WAWA-IR without GOOGLE 91%  1.14 ±   0.15 
 

WAWA-IR seeded with GOOGLE is able to slightly improve on GOOGLE’s 
performance by finding 96 of the 100 pages in the test set.  WAWA-IR seeded 
without GOOGLE is not able to find more home pages than GOOGLE because the 
aggregate of the five search engines used is not as accurate as GOOGLE.  In 
particular, GOOGLE appears to be quite good at finding home pages due to its 
PageRank scoring function, which globally ranks a Web page based on its 
location in the Web’s graph structure and not on the page’s content [4]. 

WAWA-IR experiments seeded with and without GOOGLE have the advantage of 
having a lower mean rank and variance than GOOGLE.  We attribute this difference 
to WAWA-IR’s learning ability, which is able to bump home pages to the top of 
the list.  Finally, this set of experiments show how WAWA-IR can be used to 
personalize search engines by reorganizing the results they return as well as 
searching for nearby pages that score high. 

3.3 Other IR Learners 

Like WAWA, Syskill and Webert [30], and WebWatcher [18] are Web agents that 
use machine learning techniques.  They, respectively, use a Bayesian classifier and 
a reinforcement learning -- TFIDF hybrid to learn about interesting Web pages and 
hyperlinks.  Unlike WAWA, these systems are unable to accept (and refine) advice, 
which usually is simple to provide and can lead to better learning than rating or 
manually visiting many Web pages. 
 Drummond et al. [9] have created a system which assists users browsing 
software libraries.  Their system learns unobtrusively by observing users’ actions.  

 



Letizia [21] is a system similar to Drummond et al.’s that uses lookahead search 
from the current location in the user’s Web browser.  Compared to WAWA, 
Drummond’s system and Letizia are at a disadvantage since they cannot take 
advantage of advice given by the user. 
 WebFoot [42] is a system similar to WAWA, which uses HTML page-layout 
information to divide a Web page into segments of text.  WAWA uses these 
segments to create an expressive advice language and extract input features for its 
neural networks.  WebFoot, on the other hand, utilizes these segments to extract 
information from Web pages.  Also, unlike WAWA, WebFoot only learns via 
supervised learning. 
 CORA [24] is a domain-specific search engine on computer science research 
papers.  Like WAWA, it uses reinforcement-learning techniques to efficiently 
spider the Web [32].  CORA’s reinforcement learner is trained off-line on a set of 
documents and hyperlinks which enables its Q-function to be learned via dynamic 
programming since both the reward function and the state transition function are 
known.  WAWA’s training, on the other hand, is done on-line.  WAWA uses 
temporal-difference methods to evaluate the reward of following a hyperlink.  In 
addition, WAWA’s reinforcement-learner automatically generates its own training 
examples and is able to accept and refine user’s advice.  CORA’s reinforcement-
learner is unable to perform either of these two actions.  To classify text, CORA 
uses naive Bayes in combination with the EM algorithm [8], and the statistical 
technique “shrinkage” [22,23].  Again, unlike WAWA, CORA’s text classifier 
learns only through training examples and cannot accept and refine advice. 
 
4 Extracting Information from the Web 
Information extraction (IE) is the process of pulling desired pieces of information 
out of a document, such as the author of an article.  Unfortunately, building an IE 
learners requires either a large number of annotated examples8 or an expert to 
provide sufficient (and correct) knowledge about the domain of interest.  Both of 
these requirements make it time-consuming and difficult to build an IE system.  
Similar to the IR case, we use WAWA's theory-refinement mechanism to build an 
IE system, namely WAWA-IE.  By using theory refinement, we are able to strike a 
balance between needing a large number of labeled examples and having a 
complete (and correct) set of domain knowledge. 
 This section describes WAWA-IE, experimental results on WAWA-IE, and some 
other recently developed IE learners. 

4.1 WAWA-IE 

WAWA-IE takes advantage of the intuition that IR and IE are nearly inverse 
problems of each other.  We illustrate this intuition with an example.  Assume we 
have access to an effective home-page finder, which takes as input a person’s 
                                                           
8 By annotated examples, we mean the result of the tedious process of reading the training 
documents and tagging each extraction by hand. 

 



name and returns her home page.  The inverse of such an IR system is an IE 
system that takes in home pages and returns the names of the people to whom the 
pages belong.  By using a generate-and-test approach to information extraction, 
we are able to utilize what is essentially an IR system to address the IE task.  In 
the generate step, the user first specifies the slots to be filled (along with their 
part-of-speech tags or parse structures), and WAWA-IE generates a large list of 
candidate extractions from the document.  Each entry in this list of candidate 
extractions is one complete set of slot fillers for the user-defined extraction 
template.  In the test step, WAWA-IE scores each possible entry in the list of 
candidate extractions.  The candidates that produce scores that are greater than a 
system-defined threshold are returned as the extracted information.  A critical 
component of WAWA-IE is an intelligent selector that eliminates the need to create 
an exhaustive list of all possible candidate bindings.   

The first step WAWA-IE takes (both during training and after) is to generate all 
possible fillers for each individual slot for a given document.  Fillers can be 
individual words or phrases.  Individual words are collected by using Brill’s 
tagger [3], which annotates each word in a document with its part-of-speech tag.  
For each slot, we collect every word in the document that has a POS tag that 
matches a tag assigned to this variable somewhere in the IE task’s advice.  For 
cases where a variable is associated with a phrase, we apply a sentence analyzer 
called Sundance [33] to each document.  We then collect those phrases that match 
the specified parse structure for the extraction slot and also generate all possible 
subphrases of consecutive words (since Sundance only performs a crude shallow 
parsing).   

At this point, we typically have lengthy lists of candidate fillers for each slot, 
and we need to focus on generating good combinations that fill all the slots.  
Obviously, this process can be combinatorially demanding.  To reduce this 
computational complexity, WAWA-IE contains several methods (called selectors) 
for creating complete assignments to the slots from the lists of individual slot 
bindings.  WAWA-IE’s selectors range from suboptimal and cheap (like simple 
random sampling from each individual list) to optimal and expensive (like 
exhaustively producing all possible combinations of the individual slot fillers).  
Among its heuristically inclined selectors, WAWA-IE has a modified WalkSAT 
algorithm [37], a modified GSAT algorithm [37], a hill-climbing algorithm with 
random restarts [35], and a statistically-oriented selector [10].   

In our modified WalkSAT algorithm, we build the list of combination-slots 
candidate extractions for a document by randomly selecting an item from each 
extraction slot’s list of individual-slot candidates.  This produces a combination-
slots candidate extraction that contains a candidate filler for each slot in the 
template.  If the score produced by the SCOREPAGE network is high enough (i.e., 
over 9 on a -10 to 10 scale) for this set of variable bindings, then we add this 
combination to the list of combination-slots candidates.  Otherwise, we repeatedly 
and randomly select a slot in the template.  Then, with probability p, we randomly 
select a candidate for the selected slot and add the resulting combination-slots 
candidate to the list of combination-slots candidates.  With probability 1-p, we 
iterate over all possible candidates for this slot and add the candidate that 

 



produces the highest network score for the document to the list of combination-
slots candidates.9  

To build a WAWA-IE agent, the user provides the following information:  
1. The set of on-line documents from which the information is to be extracted.   
2. The extraction slots like speaker names, etc.   
3. The possible part-of-speech (POS) tags (e.g., noun, verb, etc) or the parse 

structures (e.g., noun phrase, verb phrase, etc) for each extraction slot.   
4. A set of advice rules containing variables which refer to the extraction slots.10  
5. A set of annotated examples, i.e., training documents in which extraction slots 

have been marked by hand.   
In one of our case studies, we want to extract names of proteins and their 
subcellular locations from the yeast database of Ray and Craven [31].  One of our 
advice rules for this task is: When the phrase “?ProteinName/Nphrase •/Vphrase 
?LocationName/Nphrase” appears in the document, then score it very high.  The 
variables ?ProteinName and ?LocationName represent the protein names and their 
subcellular structures.  The “/Nphrase” trailing the variables indicates the required 
parse structure of the variables (“Nphrase” refers to a noun phrase).  The 
“•/Vphrase” matches any verb phrase.  The precondition of this rule matches 
phrases such as “UBC6 localizes to the endoplasmic reticulum.”  

Figure 3a shows the process of building a trained IE agent.  Since (usually) only 
positive training examples are provided in IE domains, we first need to generate 
some negative training examples.  To this end, we run the training documents 
through the candidate generator and selector described above.  In this step, the 
heuristic used in the candidate selector scores each possible training extraction on 
the untrained SCOREPAGE network.  By untrained, we mean a network containing 
only compiled (initial) advice and without any further training via 
backpropagation and labeled examples.  The effect of using the untrained 
SCOREPAGE network is that the generated list contains informative negative 
examples (i.e., near misses).  This is due to the fact that the user-provided prior 
knowledge rates these “near miss” training extractions highly (as if they were true 
extractions).   

After the negative examples are collected, we train the SCOREPAGE neural 
network using these negative examples and all the provided positive examples.  
By training the network to recognize (i.e., produce a high output score for) a 
correct extraction in the context of the document as a whole [41], we are able to 
take advantage of the global layout of the information available in the documents 
of interest. 

Figure 3b depicts the steps a trained IE agent takes to produce extractions.  For 
each entry in the list of combination-slots extraction candidates, we first bind the 
variables to their candidate values.  Then, we perform a forward propagation on 
the trained SCOREPAGE network and output the score of the network for the test 
document based on the candidate bindings.  If the output value of the network is 

                                                           
9 See Eliassi-Rad [10] for complete details on all the selectors. 
10 Actually, the user does not have to explicitly provide the extraction slots and their POS 
tags separately from advice since they can be extracted from the advice rules. 

 



greater than the system-defined threshold,11 we record the bindings as an 
extraction.  Otherwise, these bindings are discarded. 
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.2 WAWA-IE: An Experimental Study 
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fillers extracted to the total number of fillers in correct extraction slots [46].  An 
ideal system has a precision and recall of 100%.  The commonly used F1-measure 
combines precision and recall using the following formula:  

F1 = (2 × Precision × Recall) / (Precision + Recall) 
The F1-measure is more versatile than either precision or recall for explaining 

relative performance of different systems, since it takes into account the inherent 
tradeoff that exists between precision and recall. 

Ray and Craven [31] split the yeast data set into five disjoint sets and ran 5-fold 
cross-validation for their experiments.  We use the same folds with WAWA-IE and 
compare our results to theirs.  Figure 4 illustrates the difference in the test-set F1-
measure between our modified WalkSAT selector and the exhaustive candidate 
selector (where all possible negative exampls are used).  The horizontal axis 
depicts the percentage of negative training examples used during the learning 
process, and the vertical axis depicts the F1-measure of the trained IE-agent on the 
test set.  WAWA-IE is able to achieve very good performance by using less than 
20% of the negative training candidates, which demonstrates that we can 
intelligently select good training examples (and, hence, reduce training time). 
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Fig. 4. F

1
-measure on the Test Set vs. Percentage of Negative Training Candidates 

Used for Different Selector Algorithms  

In F
1
-measures, WAWA-IE’s trained agents outperform the untrained agents by 

approximately 50% (results not shown).  This further demonstrates that WAWA-IE 
is able to refine initial advice.   

Figure 5 shows the precision and recall curves for (a)WAWA-IE’s trained agent 
with the modified WalkSAT selector (using 17% of the negative examples), (b) 
WAWA-IE’s trained agent without a selector (i.e., using all the negative training 
examples), and (c) the system of Ray and Craven.   
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The trained IE agent without any selector algorithm produces the best results.  
But  it is computationally very expensive, since it needs to take the cross-product 
of all entries in the lists of individual-slot candidates.  The trained IE agent with 
modified WalkSAT selector performs quite well, still outperforming Ray and 
Craven’s system.   

Our results both illustrate the value of using theory refinement for IE and justify 
using an intelligent candidate-selection algorithm to reduce the computational 
burden of our “IE via IR” approach, which uses a computationally demanding 
generate-and-test strategy.  WAWA-IE with the “modified WalkSAT” selector is 
able to improve on the state of the art using only 17% of the possible negative 
training candidates during training.  Finally, recall that we also use our variant of 
WalkSAT during testing.  Thus, Figure 5 also shows that we obtain good precision 
and recall without needing to exhaustively score every possible candidate.   

4.3 Other IE Learners 

We were able to find only one other system in the literature that applies theory 
refinement to the IE problem.  Feldman et al.’s IE system [11] takes a set of 
approximate IE rules and uses training examples to incrementally revise the 
inaccuracies in the initial rules.  Their revision algorithm uses heuristics to find the 
place and type of revision that should be performed.  Unlike WAWA-IE’s advice 
rules, their IE rules provide advice on how to refine existing rules.   Also, their 
system manipulates IE rules directly, whereas WAWA-IE compiles rules into 
neural networks and uses standard neural training to refine the rules.  Finally, their 
approach is to suggest possible revisions to the human user, whereas WAWA-IE’s 
approach is to make the revisions automatically. 

Most IE systems break down into two groups.  The first group uses some kind of 
relational learning to learn extraction patterns [5,14,43].  The second group learns 
parameters of hidden Markov models (HMMs) and uses the HMMs to extract 

 



information [2,15,20,31,38].  Recently, Freitag and Kushmerick [16] combined 
wrapper induction techniques [19] with the AdaBoost algorithm [36] to create an 
extraction system named BWI (short for Boosted Wrapper Induction).  Their 
system out-performed many of the relational learners and was competitive with 
systems using HMMs and WAWA-IE.   

Leek [20] uses HMMs for extracting information from biomedical text.  His 
system uses a lot of initial knowledge to build the HMM model before using the 
training data to learn the parameters of HMM.  However, his system is not able to 
refine the knowledge.   

Several authors use statistical methods to reduce the need for a lot of training 
examples.  Freitag and McCallum [15] use HMMs to extract information from 
text.  They employ a statistical technique called “shrinkage” to get around the 
problem of not having sufficient labeled examples.  Seymore et al. [38] also use 
HMMs to extract information from on-line text.  They get around the problem of 
not having sufficient training data by using data that is labeled for another purpose 
in their system.  Similarly, Craven and Kumlien [6] use “weakly” labeled training 
data to reduce the need for labeled training examples.   
 One advantage of our system is that we are able to utilize prior knowledge, 
which reduces the need for a large number of labeled training examples.  
However, we do not depend on the initial knowledge being 100% correct.  We 
believe that it is relatively easy for users to articulate some useful domain-specific 
advice (especially when a user-friendly interface is provided that converts their 
advice into the specifics of WAWA’s advice language).  The second advantage of 
our system is that the entire content of the document is used to estimate the 
correctness of a candidate extraction.  This allows us to learn about the extraction 
slots and the documents in which they appear.  The third advantage of WAWA-IE 
is that we are able to utilize the untrained SCOREPAGE network to produce some 
informative negative training examples (i.e., near misses). 

5 Future Directions  
In order to better understand what people would like to say to an instructable Web 
agent (such as WAWA) and improve our advice language accordingly, we need to 
build more personalized and easily customized intelligent Web agents.  

We would like to embed WAWA into a major, existing Web browser, thereby 
minimizing new interface features that users must learn in order to interact with 
our system.  Related to this, we would like to develop methods whereby WAWA 
can automatically infer plausible training examples by observing users’ normal 
use of their browsers [17].   

In our IE domains, we would like to incorporate the candidate generation and 
selection steps directly into our connectionist framework, whereby we would use 
the current SCOREPAGE network to find new candidate extractions during the 
training process.  Finally, an interesting area of research would be to explore 
theory-refinement techniques on different supervised learning algorithms (such as 
support vector machines [7], HMMs, and relational learners). 

 



6 Conclusion 
We argue that a promising way to create useful intelligent agents is to involve 
both the user’s ability to do direct programming (i.e., provide approximately 
correct instructions of some sort), along with the agent’s ability to accept and 
automatically create training examples.  Due to the largely unstructured nature and 
the size of the Web, such a hybrid approach is more appealing than ones solely 
based on either non-adaptive agent programming languages or users that rate or 
mark the desired extractions from a large number of Web pages.   

WAWA utilizes the user’s knowledge about the task at hand to build agents that 
retrieve and extract information.  Three important characteristics of WAWA’s 
agents are (i) their ability to receive instructions and refine their knowledge-bases 
through learning (hence, the instructions provided by the user need not be 
perfectly correct), (ii) their ability to receive the user’s advice continually, and (iii) 
their ability to create informative training examples. 

We first present and evaluate WAWA’s information-retrieval system, which 
provides an appealing approach for creating personalized information-finding 
agents for the Web.  A central aspect of our design is that a machine learner is at 
the core.  Users create specialized agents by articulating their interests in our 
advice language.  WAWA-IR compiles these instructions into neural networks, 
thereby allowing for subsequent refinement.  The system both creates its own 
training examples (via reinforcement learning) and allows for supervised training 
should the user wish to rate the information a WAWA-IR agent finds.  This process 
of continuous learning makes WAWA-IR agents (self) adaptive.  Our “home-page 
finder” case study demonstrates that we can build an effective agent for a web-
based task quickly. 

We also describe and evaluate a system for using theory refinement to perform 
information extraction.  WAWA’s information-extraction system uses a neural 
network, which accepts advice containing variables, to rate candidate variable 
bindings in the content of the document as a whole.  Our extraction process first 
generates a large set of candidate variable bindings for each slot, then selects a 
subset of the possible slot bindings via heuristic search, and finally uses the 
trained network to judge which are “best.” Those bindings that score higher than a 
system-computed threshold are returned as the extracted information.  By using 
theory refinement, we are able to take advantage of prior knowledge in the domain 
of interest and produce some informative training examples, both of which lead to 
an increase in the performance of the IE agent.  Our experiments on the Yeast 
protein-localization domain illustrates that we are able to compete with state-of-
the-systems.  Also, we empirically show the benefits of using intelligent 
algorithms for selecting possible candidates for multiple slots.   

We also briefly reviewed other approaches to the IR and IE tasks that are based 
on machine learning techniques.  These systems, including ours, demonstrate the 
promise of using machine learning to make sense of the vast resourses that is the 
World-Wide Web. 
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